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Multi-Center Project –
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Team Members
– Scott Hutchinson , Rob Hoekstra, Eric 

Keiter (09233)
– David Day (09214)
– Tammy Kolda (08950)
– Steve Wix (PI), Lon Waters, Regina 

Schells, Thomas Russo, Carolyn 
Bogdan (01734)

– David Shirley (Abba Tech.)
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ProjectProject
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– Bill Ballard, Ken Marx, Steve 

Brandon (08418)
– Marty Stevenson, Fred 

Anderson, Pat Smith (02612)
– George Laguna (02338)David 

Shirley (Abba Tech.)
– Bob Brocatto (01735), John Dye 

(02331), Mark De Spain 
(02125), John Tenney (12333)

Collaborators
– Trilinos / Epetra / NOX (Mike Heroux, Roger Pawlowski, 

Tammy Kolda)
– DAKOTA (Bart van Bloemen Waanders)
– Entero (David Gardner, Joseph Castro, Mark Gonzales)
– Malcolm Panthaki (CoMeT Solutions)
– Mixed Signal (Phil & Dale)
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Xyce Status

Code-gen to First Parallel Run: 6 Months
ASCI Milestone Supporting Calculation on Real 
Weapon Sub-system: 18 Months
Currently in Beta 2 Release
Scheduled Version 1.0 Release in October, 2002: 
30 Months
ASCI Level 1 Hostile Milestone FY03
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Beta 2 Release

Dry Run for Official 1.0 
Release
GNU AutoTooled
Supported Platforms
– SGI (32 & 64 bit, MPI)
– Linux (MPICH, MPILAM)
– FreeBSD (MPICH, MPILAM)
– Compaq Alpha Tru64 (MPI)
– CPlant (Ross, Ross2) (MPI)
– Cplant (CA) PENDING
– Windoze (Serial)

Documentation
SQE Gap-Assessment
Third Party Software Process
– Trilinos
– Xpetra
– SuperLU & Epetra_SLU
– Zoltan & Zoltan_C++
– Chaco & Chaco_C++
– Expression
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Release Documentation
Xyce User’s Guide, Version Beta 2
Xyce Design – Theory and 
Implementation, Version Beta 2
SQE Documentation

– Release and Distribution Management
– Third Party Software Configuration 

Management Plan
The Xyce Parallel Electronic Simulator –
an Overview, Proceedings of Parallel 
Computing 2001
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Background

Analog Circuit Simulation
– Modified Kirchoff’s Current Law
– Compact Device Models
– Technical Challenges
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Circuit Simulation

Circuit simulation is applied at several levels of 
abstraction:

– Device (PDE)
– Analog (ODE/DAE)
– Digital (VHDL)
– Co-Simulation (Circuit + Software)

Analog simulation models:
– Network of devices
– Typically described by ODEs
– Coupled via Kirchoff’s current and/or voltage laws
– Several analysis options: DC Sweep, 

DC Operating Point, Transient, AC Analysis
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Modified KCL Formulation

Xyce (and most other circuit codes) represent the problem using 
modified KCL (Kirchoff’s current law) equations.
KCL : sum of all currents into a circuit node equals zero.

Each node: 1 KCL equation, 1 nodal voltage variable.  
N nodes ->  N KCL equations ->  N node voltage variables
A KCL formulation becomes a modified KCL formulation when it is 
necessary to include some current variables.

Node 1
I2I3

I1
KCL , Node 1: 

f =  I1 – I2 – I3 = 0
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Device Example: Resistor

~ Resistors and Capacitors are the simplest circuit elements.
~ Most devices are a combination of resistive and capacitive elements.
~ Resistor load:

V = I * R                   (V = V1-V2)
V1 = voltage at Node 1.
V2 = voltage at Node 2.

I = G*V = G(V1-V2)
where G = 1/R = conductance.

G may be constant (linear)
or G = f(V)                (nonlinear)
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Device Example: Capacitor

Capacitors are charge storage devices.
Capacitor load:
IC = C dV/dT = dQ/dT
C = capacitance =  C(V)
Q = charge stored

Time derivatives are obtained from the Time Integration Package
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Device Example: Voltage Source

Independent voltage sources require current variables.
Current through a voltage source not a function of voltage drop across the source 
(no I = V/R relationship!).
Matrix stamp has no diagonals elements.
Result:  “one’s pairs”.
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Device Example: MOSFET BSIM3

BSIM3 = Berkeley Short Channel IGFET Model v.3
Established, 1996, by SEMATECH as an industry-wide standard for 
simulating integrated circuit MOSFETs 
Crucial for ASCI milestone.  Prerequisite for Rad-Hard Pentium 
simulation.

BSIM3 is one of the most complex device models in widespread use.
– over 400 user-defined parameters.
– In Xyce, the *.C associated with this device ~ 13,000 lines.
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Device Example: MOSFET BSIM3

The complexity lies in the derivation of the nonlinear 
resistances, capacitances, and currents.

Source Drain

Gate

Bulk Si

Channel
Oxide

n+ n+
Source Drain

Bulk

Gate

Channel
Current

N-channel MOSFET cross-section
MOSFET Equivalent Circuit
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Circuits VS. PDE’s
Mesh Node Voltage Node MOSFET

DOF <5 1 0-3
Edges ~1-10 1- >10,000 4
Flops 1s-100s 0 >1,000
(Load/Assembly)

• High Edge Count                     à Dense Rows
• High Cost Load Calculations à Load Imbalance

• CIRCUITS ARE NETWORKS RATHER THAN MESHES
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Rad Hard Pentium Multiplier
• ~70,000 MOSFET Transistors; ~25,000 Equations
• Max Edge Degree >5,000

Original Block RCM
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DC-OP Eigenvalues

Dramatic Improvement 
Over Initial Condition 
Number but the System 
Remains Numerically 
Singular until 
Convergence!
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Circuit Simulation Challanges

Algorithmic (time, nonlinear and linear solutions)
– Stiff, coupled DAE’sàDifferent characteristics than PDEs
– Highly nonlinear (device model discontinuities, hysteresis, etc.)
– Large, ill-conditioned sparse Jacobian matrices present unique ordering and 

preconditioning challenges

Implementation
– Circuit problems can be very heterogeneous in terms of both the devices and the topology 
àThere is no “characteristic” circuit!

– Different computational phases scale differently

Previously, no scalable, parallel circuit code existedPreviously, no scalable, parallel circuit code existed
èAttempts have resulted in ~50% efficiency on up to 8 processors.

Sandia has no history of developing large scale circuit codesSandia has no history of developing large scale circuit codes
èWe’re discovering new challenges as we develop new capability!
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Xyce

Architecture
– Overview
– Topology
– Solvers
– Parallel

Algorithms
– Partitioning
– Linear Solution
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Xyce Architecture

XyceTM

Simulation/Numerical 
Algorithms

Time Integrator

Nonlinear Solver

Linear Solver (Trilinos)

Topology Mgr.

Device Models 
Interface

Load-
Balancing
(Zoltan)

I/O Interface

CoMeT
- GUI
- Visualization
- Project Tree Mgt.
- Design Process Mgt.
- Code coupling

DAKOTA
- Optimization
- UQ

Netlist
Input

DMF/SAF
Start/Restart

Solution
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Distributed Topology

Generalized Distributed 
Topological Support
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Device “Ghosting”

Owned   Not Owned

Device Node

Voltage Node

“Owned”/Internal node
– processor loads associated 

rows
“Not Owned”/External node

– Dev-node: Load to V-node 
rows

– V-node: Reference for 
nonlocal data

• Requires global 
communication to update 
distribute shared solution 
vector data

RI

MB
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IB

RB
V1
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V2

V6

V3
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Distributed/Parallel Tools

Communicator (Trilinos & Xyce)
– Communication abstraction layer: serial, MPI, (PVM)…

Directory (Trilinos & Xyce)  à Global Data Lookup
– Distributed Hashed Database

Accessor (Trilinos & Xyce)  à Global Data Access
– Low cost data migration of basic data types and arrays

Migrator (Xyce)  à Global Data Migration
– Large scale data migration of arbitrary class structures (Devices, Ckt Nodes, etc)

Generic Factory (Xyce, In Progress)
– Template Based Arbitrary Class Factory

Smart Pointer (In Progress)
– Policy and Trait Based Pointer allowing user controlled reference counting, storage 

method, error checking, etc.
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Solvers

Close Collaboration with ASCI Algorithms at Sandia 
(John Shadid, Mike Heroux, David Day, Roger Pawlowski, Tammy Kolda)

Time-Integration package:
– Backward Euler, BDF2, Trapezoidal
– Adaptive step-size control, Discontinuity breakpointing

Nonlinear Solver Package
– Inexact Newton, Modified Newton, Steepest Descent, Trust Region, Hybrid
– Globalization: Interval halving, Bank & Rose, Backtracking, More’-Thuente
– Replaced by: NOX

Linear-Algebra Services Package: TRILINOS
– Rich interface for tighter nonlinear/linear solver coupling
– Flexible Norm Support
– Dynamic Load Balancing - ZOLTAN
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Load Balance/Partitioning

Collaboration with Trilinos and Zoltan efforts (ASCI Algorithms)
Coupled Load and Solve Phases
Topology-ZOLTAN : TRILINOS-ZOLTAN Interface

==

“Solve” Partitioning:
ParMETIS: “PartKway”
Constraints: Communication

Ordering
Preconditioning

Communication
Cost: Minimize

“Load” Partitioning:
ParMETIS: “PartKway” and diffusion
Constraints: Load Balance

(Heterogeneous/Weighted)



Fault Tolerance Workshop 2617 July 2002

Parallel Efficiency

• Scaled Problem Size
• 3500 devices/processor on 

SGI Origin
• ~5 minute solve time
• Partitioning

- Netlist Order
- Random
- Repartitioned

• Dramatic improvement in 
scalability for re-partitioned 
problem

Scaled Parallel Efficiency
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Rad Hard Pentunm Multiplier

MIN     MAX     SUM
Unknowns:     915     1995     25187
Cuts:             2592    47253  150800
Boundary:      844      1796    22653
Adj. Proc:         10         15        222

Original                                              Repartitioned

58%

92%

70,000 MOSFETs (of ~2 million)
25,187 Unknowns
258,265 NonZeroes
16 processors
>90% of MOSFETs connect to power

MIN     MAX     SUM
Unknowns:   1555    1566    25187
Cuts:             9399   77235   259126
Boundary:     1508    1553    24697
Adj. Proc:         15        15        240
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Rad Hard Pentium Multiplier
Multiplier Circuit Histogram
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Digital Circuits:
– Power node generates very dense row (~0.9*N)
– Bus lines and clock paths generate order of magnitude increases in bandwidth
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Distributed Sources

Dramatic Decrease In Communication Volume à CUTS
Minimal Decrease In Communication Count à ADJ PROC

MIN     MAX     SUM
Unknowns:     915     1995     25187
Cuts:             2592    47253  150800
Boundary:      844      1796    22653
Adj. Proc:         10         15        222

Parmetis – PartKway
Linear System

MIN     MAX     SUM
Unknowns:    4856    7567     95756
Cuts:               417     1296     5719 
Boundary:      377      1047     8807
Adj. Proc:          9         15        194

CHACO – Multilevel-KL
Circuit
25% imbalance
Distrib. Ind. Vsrc’s
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RHP Multiplier Scaling
RHP Multiplier Speedup

71,097 Devices, 28,609 Equations
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Linear System Reduction
Reduction to “Essential” System
– Constraints (‘Singleton’ Rows)
– Auxiliary Equations (‘Singleton’ Columns)
– Based on Achim Basermann’s Results (NEC Europe)
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Linear System Reduction
David Day’s Block Algorithm
Implementation in Trilinos and XPetra

– Global Search Algorithm
– Sparse global GAXPY operation (BC Reduction)
– Reduced System Remapping
– Block Local Reordering (Zoltan)
– Distributed Backsolve (Low Bandwidth)
– Interface U33

U11 S12 S13

S23
Reduced
System22

109 rows, 624 nonzeros
Condition: 8.3 • 106

99 rows, 385 nonzeros
Condition: 2.9 • 103

33: Global Backsolve

22: Global GAXPY
Iterative Solve

11: Global GAXPY
Global Backsolve
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Schur Complement Preconditioning

Original matrix Matrix without global nodes
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Coupled Simulation

DAKOTA (Bart van Bloemen Waanders, Eric Keiter)
– Optimization
– Sensitivity

PDE Semiconductor Devices (Eric Keiter)
– Internal (1D & 2D)
– Charon (New 3D FE Code)

Digital/Mixed Signal (Univ. of Cincinnati)
Radiation (ITS, NuGET, Entero)
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Xyce/DAKOTA Black Box Optimization: 
Minimize Delay

Xyce

DAKOTA:
Optimization
Uncertainty Estimation
Parameter Estimation
Sensitivity AnalysisCircuit

Model
Output

DAKOTA is a framework of tools for optimization, uncertainty estimation, and 
sensitivity analysis, for use with massively parallel computers.
Design Goal: find optimal channel width and lengths for NMOS & PMOS devices to 
minimize delay of input and output  signal
Bigger devices:    more charge storage, longer delays.
Smaller devices:  more expensive, more difficult to layout.
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Xyce/Dakota Results
Comparator Circuit

Nominal Design Final Design

Channel length = 2E-6,  width = 2E-6 Channel length = 1E-6,  width = 5E-6

• Found solution in 6 fcn evaluations using gradient based method vs 50 fcn       
evaluations using coordinate pattern search

• Comparator circuit:  ~ 20 MOSFETs.
• Smooth Objective function.

delay

input
Output
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Milestone FPGA circuit
flip-flop device optimization

FPGA consists of  XOR, AND, flip-flop sub-circuits 
Flip-flop circuit - 34 devices divided into 12 design 
variables -(6 x widths/lengths) chosen based on 
nominal width and length specifications
Minimize delay between input and output signal
Centered parameter study results:

– random lower values
– Xyce terminate in certain design space
– Screening for gradient based method

Gradient based method (npsol-sqp) failed,
Vector parameter study from initial point to bounds (40 
steps):

– identified non-smooth behavior 
– multi-modal

Genetic Algorithm study identified best design
– 1000 function evaluations using population size of 

160 (7 cycles)
– SGOPT pga_real (W.E.Hart)
– ran overnight on 8 proc Linux cluster

Results:
– Nominal :             112.1
– Best        :              29.2 Best Design

Vector Parameter Study - non-smooth behavior
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PDE Device Simulation
Long term: CSRF to develop Charon, a 
3D reacting flow simulator. (see the next 
talk with Gary Hennigan)

– Initial application: 3D device simulation.
– Finite Element discretization (unusual in 

device simulation).
Short term: LDRD for Device-Circuit 
coupling.

– 2D unstructured mesh device simulator 
built inside of Xyce.

– Prototype for Charon.
– Finite volume discretization - same as 

most commercial device codes:  DaVinci, 
Pisces, Taurus, etc.

3D MOSFET mesh from 
DaVinci
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PDE Device Simulation

Self-Consistently models transport of two charged species: 
electrons and holes.
Numerically solves the semiconductor equations:

Poisson:

Continuity:

where 

• These equations comprise the drift-diffusion formulation, 
which is the most common equation set for device simulation.

( ) ( )D Aq p n N Nε + −∇ ⋅ − ∇ Ψ = − + −

1 1
n p

pn J U J Uq qt t
∂∂ −= ∇ ⋅ − = ∇ ⋅ −∂ ∂     ,    

 andn n n p p pJ q D n q n J q D p q pµ µ= ∇ − ∇ Ψ = − ∇ − ∇ Ψ         
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Circuit-Device Coupling Approaches: 
Full-Newton and Two-Level Newton

The full-Newton algorithm solves the PDE device and the ODE circuit nodes
simultaneously using the same Jacobian matrix.
The two-level Newton algorithm solves the ODE circuit at one level and sub-
iterates on the PDE device on a second level.

– Two-level in Xyce will still use same Jacobian.

Circuit Problem

Device #1 Problem

Device #2 Problem

Device #3 Problem

Two-Level Newton

Device #1
Matrix

Device #2
Matrix

Device #3
Matrix

Circuit
MatrixCircuit Connectivity Elements

Full Newton
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DC(Steady State) Coupled
Circuit/PDE Simulation
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NPN bipolar transistor in the 
active regime.
Collector at a high positive 
bias.
Initial Vmax: ~1.0V
Final Vmax: ~5.5V

Ne max:  1.0e+19 per ccm

Note the initial potential 
variation, due to the built-in 
potential of the device. Electron Density

Electrostatic Potential

1.0e+19

1.0e+7
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Fault Tolerance

CURRENT
– Checkpoint
– Restart

Issues
Future
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Checkpoint/Restart

Full Featured Serial and Parallel Support
– Flexible checkpoint frequency control
– Independent repartitioning of restart run
– Pipelined through control node (Proc 0)

Efficient Storage
– Packed Data à Relatively Small Data Sets
– Transient nonlinear system state snapshot
– Internal Device State
– Solver Conditions (Breakpoints, Time Step, etc.)
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Questions

Output Commit Rate
– User Determined/Problem Dependent
– Relatively Small Data Sets

Checkpoint Data Size
– Only Full Checkpoint Currently
– Small: 0.1 à10 Mbytes

Communication
– MPI, Single Threaded
– Driven by Linear Solver
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Questions

Process Synchronization
– Relatively Tight Due to Linear Solver

Memory ?
Bandwidth ?
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Issues/Future

Requirements Similar to Transient PDE Simulation
Fault Tolerance with Coupled Physics
– ASCI FY03 Level 1 Milestone
– PDE Devices
– Radiation, Thermal : EXTERNAL CODES

ASCI Platforms
– MPI Variants
– Custom OS and Compilers?
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Summary

Xyce Version 1.0 Release (Oct., 2002)
FY03 ASCI Electrical Milestone 
Fault Tolerance
– Trilinos Solver Framework
– Automated Checkpoint/Restart
– Coupled Simulations


